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Abstract. The energy spectrum of twodimensional magnetoexcirons has been calculated using 
the shined I I N  expansion melhod (N the space dimension). It is found that even in the leading- 
term approximation this approach provides remarkably accurate and simple analytic expressions 
For the magnetoexiton energies for any magnetic field strength and electron-hole mass d o .  
For the infinite-hole-mass exciton (hydmgenic impurity) our results show an excellen1 agreement 
with previously reported numerical data in the whole magnetic field range. Higher terms in the 
expansion which allow a systematic improvement of lowenergy values m also considered. 

1. Introduction 

The linear and nonlinear optical propenies of direct band gap semiconductor quantum wells 
near the fundamental absorption edge are dominated by excitons. It is now well established 
that confinement of excitons on length scales smaller than the bulk Bohr radius leads to an 
enhanced resonant optical response. In view of the potential applications of low-dimensional 
structures, the study of exciton stales found in these systems, with and without extemal 
fields, is an issue of technical as well as scientific importance. There are several good 
reasons to consider the 2D exciton problem in a magnetic field, putting aside effects of 
finite well width, finite banier height and valence band mixing. First, the 2D exciton 
problem is exactly solvable in the absence of magnetic fields providing a good starting 
point to consider magnetic field effects. Second, magnetoexcitons in quasi-two-dimensional 
semiconductor systems have been studied extensively, both experimentally and theoretically: 
both numerical calculations and empirical fit formulas for the energies are available [I ,  2, 
31. Nevertheless, the accuracy of numerical methods is best checked if simple analytic, or, 
in their absence, semi-analytic, solutions can be obtained. 

From a theoretical point of view, studies of excitons in low-dimensional systems have 
often utilized either variational approaches, based on the prescription of trial wave functions, 
or perturbative expansions from known results in the weak- and strong-magnetic-field limits. 
It is important to elaborate on new forms to attack this problem. A semi-classical approach 
might give, in several cases, useful insights about the physics of these systems without the 
necessity of performing highly time consuming calculations. In this paper we present one 
such alternative which besides its great level of accuracy is simple enough to guarantee 
flexibility in the study of the physics of hydrogen-like systems in low-dimensional systems. 
The method we use provides direct interpretation in terms of semiclassical results allowing 
for systematic quantum corrections. The 1 / N  method (N is the space dimension), which 
we consider here, has been widely used in studying few-particle systems in atomic and 
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molecular physics [4], nuclear physics [SI and quark physics [6, 71. Application of this 
method to few-electron systems confined in an optical trap has also been considered. 

The shifted 1/N approach has been devised to consider exactly two problems of great 
physical interest: the Coulomb and harmonic potentials [9, 101. For these two potentials, 
taken independently one of the other, the method gives the exact result for the energy 
spectrum at first order, i.e. N-I; higher-order terms tum out to cancel exactly. With this 
result at hand it is interesting to investigate the reliability of the method for a problem where 
these two potentials appear simultaneously as is the case for a two-dimensional exciton in 
a magnetic field. It is worth noting that the Coulomb problem in a magnetic field has 
been already treated by the unshifted 1/N method by Bender et a[ [ I l l  where higher- 
order corrections are shown to cause oscillations in the energy values as the magnetic 
field increases as a consequence of lacking the appropriate very-strong-magnetic-field limit 
(harmonic oscillator limit). The shifted I /N method has been employed by Mustafa [12] in 
the study of the 2D donor impurity in the presence of an arbitrary magnetic field. In this last 
work comparison with numerical Pad6 approximants results [13, 141 has been performed 
showing an adequate agreement at intermediate magnetic fields but a completely wrong 
convergence of the energy levels to the B = 0 limit. This is fully unacceptable due to 
the fact that this method has been explicitly conceived to manage exactly the Coulomb 
problem. Therefore, a careful reexamination of the method as applied to hydrogen-like 
systems in 2D semiconductor heterostructures in the presence of a magnetic field must be 
accomplished. 

In this paper we show explicitly that the shifted 1/N method accounts precisely for 
the magnetoexciton spectrum for any magnetic field strength. Convergence of higher-order 
terms is shown to be appropriate by calculating energy levels up to order N-3 in the whole 
range of magnetic fields. In particular, we investigate the accuracy of this method by 
comparing the magnetic field dependence of the exciton energy spectrum in the infinite 
hole-mass limit (hydrogen-like impurity) with the results reported in [13, 141 and [I51 and 
(numerical exact results). We found an excellent quantitative agreement with these results 
for weak, intermediate and strong magnetic fields. This is in contrast with Mustafa's results 
[I21 for the weak-magnetic-field limit For a finite-hole-mass exciton we limit ourselves 
to the case of zero total linear momentum. The evolution of the lowest energy levels as a 
function of magnetic field and exciton reduced mass is considered. 

In the following section, we present the theoretical model. In section 3, we present and 
discuss the results of our calculations. Our conclusions are given in section 4. 

2. The theoretical approach 

We consider the exciton problem in the effective mass approximation. The Hamiltonian of 
a hydrogen-like system in a homogeneous magnetic field is 

where me is the effective electron mass, mh the effective hole mass, q2 = e2/4r60c and 
6 is the dielectric constant (SI units are used). Without loss of generality we choose the 
symmetric gauge 

A =  iBxr .  (2) 
Following Lerner and Lozovik [161 we separate the motion of the centre of mass of 
the electron-hole pair in the magnetic field by taking for the exciton wave function the 
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expression 
W(TI,TZ) = e x p [ i h ( P + e B x r )  .Rl@(r)  (3) 

where R and r are the centre of mass and relative coordinate respectively. P denotes 
the eigenvalue of the exciton linear momentum operator. The Schrodinger equation for the 
magnetoexciton turns out to be 

where M = m,+mn and p-l = m;'+na;' denote the total and reduced electron-hole mass 
respectively. L, is the relative perpendicular angular momentum, the cyclotron frequency 
is o, = e B / p  and p=(m. - m h ) / M  is a measure of the electron-hole mass asymmetry. 
In this paper we limit ourselves to consider the two following situations: (i) Infinite-hole- 
maSs limit (hydrogen-like impurity), where M 3 00 and ,3 = -1; (ii) finite-hole-mass 
magnetoexcitons with linear momentum P = 0. Solutions of (4) have been previously 
obtained by perturbation methods [16], numerical integration 1151 and Pad6 approximants 
[13, 141 based on perturbation expansions about the weak- and strong-field limits. Here we 
transform (4) to an equation suitable to be solved by the shifted 1/N method. 

For either of the two cases of interest in thii work, (4) reduces to an equation where 
the cylindrical symmetry allows us to take for the wave function an expression such 
as @(T) = b(r)exp(ilq5) where r and 6 are the radial and azimuthal polar coordinates 
respectively and 1 denotes the angular momentum quantum number. The effective radial 
equation in N dimensions takes the form 

where u(r) = r?<(r), lB  = a denotes the magnetic length and k = 111 + 
(N - 3)/2 + 6 .  S is a suitable shift to be discussed below. The parameter l l k  is to 
be taken as an expansion parameter which amounts to considering the space dimension N 
or the angular momentum quantum number 1 as effectively large. By changing to a scaled 
variable such as x = k-'I2r the radial equation transforms to 

This last equation is the starting point of the shifted 1/N method. The eigenvalues of (6) 
can be expanded in powers of l/k as 

The leading approximation to the energy (or semiclassical limit) corresponds to the minimum 
of the effective potential fork -+ W. Higher-order corrections are evaluated as fluctuations 
around this minimum. This corresponds to the minimum of the effective classical potential. 
The equation which determines this minimum is 
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where a; = h 2 / p q 2  denotes the effective Bohr radius. The leading term is therefore given 
by 

By expanding the effective potential in (6) around this minimum, i.e. XO. higher-order 
terms can be evaluated in a straightforward way (see the appendix for details). The first 
correction to the energy different from zero (of order k - ’ ?  i.e. El(n,1)) is obtained by 
solving a onedimensional effective harmonic oscillator equation. 6 is fixed by imposing 
the vanishing of this last term which gives 

(10) 6 = 5 + (n + f ) ~  
where 

and n = 0, 1, 2. . . . . It is worth noting that R depends on both quantum numbers, 
n and I ,  through its dependence on XO. It is interesting to verify that he leading-order 
term given by (9) is exact in the zero-magnetic-field (Coulomb problem) and very-high- 
magnetic-field (Landau problem) limits. If B = 0 then xo = k3l2a;, Q = 1 and 
Eo(n, I) = -R*/2(111+ n + 1/2)2, where R* = h’jpaf is the effective Rydberg. On the 
other hand, if E + CO then xo = 2’ / ’1~ ,  Q = 2 and Eo(n, I )  = hoJn + (Ill - B l +  1)/21. 
The next contribution different from zero turns out to be of order k-’ given by (for details 
see the appendix) 

where 

It is straightforward to verify that E&, 1 )  = 0 for the two limits above considered: zero 
magnetic field, i.e. Q = 1, and infinite magnetic field, i.e. Q = 2. In order to test the 
convergence of the results at any magnetic field strength we push the calculation up to the 
next different-from-zero term which turns out to be of order kL3.  It is (for details see the 
appendix) 

where 

gl(n) = -&(94n3 + 141n2 + 109n+ 31) 
gz(n) = $(830n3 + 124.5n2+857n +221) 
g3(n) = -&(3770n3 + 5655n’ + 350311 + 809) 
gdn) = &(4574n3 + 6861n’ + 387511 + 794) 
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gs(n) = -&(3406n3 + 5109n2 + 2677n +487) (22) 

g6(12) 5(n f f)'. (23) 
It is straightforward to verify that E3(n, 1 )  = 0 in the zero magnetic field limit and in the 
high-magnetic-field limit. 

3. Results and discussion 

For B = 0 the pure hydrogenic spectrum is composed of discrete (bound state) and 
continuous (scattering state) parts. For B # 0, the spectrum is always discrete because 
the effective potential (Coulomb plus diamagnetic or harmonic term) is infinitely high. 
From this it follows that all B # 0 electron-hole pair states must extrapolate to bound 
electron-hole pair states at E = 0. In what follows we take as the energy unit the effective 
Rydberg, i.e. R* = p , q 4 / Z 2  and the magnetic field will be expressed by the dimensionless 
quantity y = hwc/2R'. In order to fix units we take = m,, i.e. the hydrogen-like 
impurity reduced mass value. We shall label the eigenstates with the standard spectroscopic 
notation s, p, d and f corresponding to II I = 0, 1 , 2  and 3 respectively, and + or - depending 
on the l sign. The label n corresponds to the Landau principal number. Therefore, states 
such as Is, 2p-, 3d- and 4 f  correspond to the same n = 0 value and will converge in the 
high-field limit to the lowest Landau level. 
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Y/(Y+l)  
Figure 1. Minimum of the effeclive potential, xg in units of 21/218. BS a function of the 
dimensionless magnetic field (see text) for the Is, 2s and 2p- states for lwo elecuon-hole mass 
ratios. Solid lines, impurity case, i.e. LL = p~ = m,: dashed lines, symmetrical 01se of equal 
electron and hole masses, i.e. p = p 1 / 2  = m,/2. 

As can he inferred from equations (9), (12) and (17) the energy levels are determined 
by the position xo of the minimum of the classical effective potential in the k + 00 limit. 
In figure 1 we show the low-energy-levels variation of xo normalized to its strong-field limit 
value, i.e. 2l/*18, for two electron-hole mass ratios: the impurity limit (solid lines) and the 
symmetrical case of identical electron and hole masses (dashed lines). The magnetic fieId 
scale has been taken as y / ( y  + 1) covering magnetic field strengths from zero to infinity. 
Note that xo is strongly dependent on the quantum numbers n and I .  We observe that the 
lighter the exciton the larger is xo for each one of the states considered. The convergence 
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Figure 2. Convergence of the I/#-melhod energy level results (in units of R*) as a function of 
the dimensionless magnetic field strength: (a) ground stnte Is energy level. (b) 3d- level and (c) 
4s level. Solid tine: numerical calculation of 1131; dotted line: leading term Eo: dashed-doued 
line: Eo + Ez: dashed line: Eo + E2 + E3. 

to the strong-field limit value (magnetic length) is faster for the excited states than for the 
ground state 11s is to be expected. 

In order to test the reliability of the I / N  method we have plotted the energy levels 
(in units of the effective Rydberg, R') for the Is, 3d- and 4s states in figure 2 as the 
expansion in inverse powers of k in equation (7) is stopped at different orders. We consider 
the hydrogen-like impurity l i t .  Unlike results presented in [12], our results show a 
correct limit when the magnetic field goes to zero, as it should be. Our results are also 
compared with the numerical Pad6 approximants expressions obtained by MacDonald et a1 
[13] for the same states (solid lines) (the two forms of Pad6 approximants in [13] and 
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[14] give the same results in the energy scale we are interested in). It is worth noting 
that these numerical interpolations have also been proved numerically using the method of 
exact series expansion by Zhu er uf [I51 finding an excellent quantitative agreement with 
results in [ 131. We observe that for the Is state the leading-term approximation crosses from 
below to above the numerical result in the intermediate-field region (figure 2(a)); inclusion 
of higher-order term makes possible an excellent agreement with the numerical data. A 
similar comparison for the 3d- state shows that the leading term is always higher in energy 
than the numerical ones but a quick convergence is obtained when higher-order terms are 
included (figure 2(b)). The situation is not so good for the highly excited 4s state where 
the leading term is always higher in energy than the numerical result and higher-order term 
corrections do not show a quick convergence (figure 2(c)). This feature associated with 
excited s states has also been previously noted and reported in the literature in connection 
with other types of central potential [17]. 

.2 .4  .6 . 8  1 .2 . 4  .6  .8 1 

Figure 3. Hydrogen-like impurity limit results (E,, + E2 t E3) for ground and [owest excited 
states as obtained by the I / N  method (solid lines) as compared with numerical results from 
[I31 (dashed lines). (a) s states, 0) p states; (e) d states; (d) two lowest f states. Note that the 
energy scale is compressed by the factor I /@ + I ) .  

A more extensive comparison between our analytic results and the Pad6 approximant 
calculations of [13] is now considered. In figure 3(a) we show the first fours states where 
we remark that the agreement between our results and the numerical ones is excellent for 
the ground state (Is) for magnetic fields of any strength. The agreement is not so good in 
the intermediate-field region for excited s states being less acceptable the higher in energy 
is the state. In  figure 3(b) the lowest six p energy levels are depicted. We observe that 
the agreement between our results and the numerical ones is much better than for the s 
states case even for excited states. In figures 3(c) and (d) the lowest four d states and two 
f states, respectively, are plotted. We observe that in the scale of the figure our results and 
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the numerical ones agree perfectly for any magnetic field strength. It is worth pointing out 
that in the compressed energy scale used in figure 3 the energy values at y / ( y  + 1) = 1, 
i.e. infinite magnetic field, correspond exactly to the Landau values, as it should be. In 
summary, we found that for fixed n. the magnetoexciton energies for arbitraly magnetic 
field become more accurate as 1 increases. This is expected since the expansion parameter 
k-' becomes smaller as I becomes larger. We conclude that the shifted 1 / N  method is 
an excellent alternative to calculate the energy spectrum of heavy excitons for arbitrary 
magnetic field strength. 

Recently, El-Said [ 181 has applied this method to the study of the energy spectrum of an 
exciton in a harmonic quantum dot where the three lowest s state energy levels have been 
studied as a function of the harmonic confinement (the equivalent of the diamagnetic term 
in our work). However, our calculation shows (figure 3(a)) that his results are not reliable 
for excited s states where the larger difference is to be expected with the exact numerical 
data. 

* 
d 

+ 
5- 
\ 
w 

h 
3 

v 

.2  . 4  .6 .8 1 

Y/(Y+l) 
Figure 4. Prom bottom to top, energy levels of Is. Zp-. 36- and 4 f  states as a function of the 
dimensionless magnetic field strength. Terms up to E, have been included, for two electron- 
hole mass ratios: solid lines, light exciton malm, = 1: dashed lines. heavy exciton mh/mr = 5. 
Same energy scale compression as in figure 3. 

From now on we limit ourselves to consider n = 0 states, i.e. those states that in the 
independent particle picture should tend to the lowest Landau level at very high magnetic 
fields. Figure 4 shows the evolution of the energy levels of states Is, 2p-, 3d- and 4f 
for two values of the reduced mass ratio: p,/p = 1.2 (a typical value for a heavy exciton 
in GaAs, dashed l ies )  and p,/p = 2 (as appropriate for simulating a light exciton in 
GaAs, solid lines). It is clear that the energy levels of the light exciton present more 
drastic variation with the magnetic field compared with the heavy exciton case. It should be 
noticed that the limit at infinite magnetic field is consistent with what we can expect from 
a consideration of the Landau level ordering of a particle of reduced mass p. In particular, 
it is to be noted that for the case of a symmetrical mass exciton the paramagnetic term 
disappears, breaking completely the high degeneracy of the Landau levels. 
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Figure 5. From bottom to top. energy levels of Is, 2p-, 3d- and 4f states (up to term E d  
as a function of the dimensionless electron-hole reduced mass for two magnetic field sttengths: 
dashed lines. low magnetic field y = 0.25 (6 = 1.58 T for GaAs); solid lines, high-magoetie 
field me  y = 4 ( B  = 25.3 T for GaAs). Note that prlp = 1 corresponds to the hydrogen-like 
impurity case and p, /p  = 2 mrresponds to h symmetrical electmn-hole mass exciton. 

Finally, it is interesting to obtain from OUI analytic results trends in the magnetoexciton 
spectrum as the electron-hole mass ratio is changed. From figure 5 it is obvious that 
the energy levels for the high-magnetic-field case present the most sensitive variation with 
the electron-hole mass ratio, approaching the linear variation as predicted by a simple 
independent particle calculation. It is also interesting to note that in the weak-magnetic- 
field case, a typical heavy exciton, corresponding to p, /p  = 1.2 in GaAs, should present in 
the low-energy part of its specmm roughly the same energy levels as for the hydrogen-like 
impurity (p, jp = 1). 

4. Conclusions 

We have presented a detailed study of the energy spectrum of two-dimensional 
magnetoexcitons as obtained by the shifted 1,” method. We have found excellent 
quantitative agreement with previously reported numerical results for the hydrogen-like 
impurity or heavy-exciton case. The energy spectrum as a function of the electron-hole 
mass ratio indicates a more sensitive variation in the strong-magnetic-field limit than in 
the weak-field limit. We conclude that the shifted 1jN method is an excellent choice to 
calculate the energy spectrum of excitons for arbitrary magnetic field strength. 
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Appendix 

In this appendix we collect the main results to calculate higher-order terms to the energy 
levels. The Hamiltonian H. the eigenvalues E and the eigenstates Ix)  are expanded in 
powers of k-'l2.  The first terms of the Hamiltonian series read 

2 d2 HI = -1,- - ( 2 6 -  1) 
du2 

where a shift of the origin of coordinates has been introduced by U = k'/z(x - XO). Note 
that HO is nothing but the minimum of the effective classical potential. The Hamiltonian 
HI describes a one-dimensional harmonic oscillator problem. The eigenfunctions of this 
Hamiltonian, which we label In), are taken as the basis set in terms of which we calculate 
the perturbations of higher orders in the energy and wave functions. The energy term of 
order k-z ,  i.e. €2 in (7). yields to the first correction of the leading tem. It is therefore 

(A8) 

In a similar way we obtain the energy term of order k-3, i.e. €3 in (7). which yields to 

E z ( n , l )  = R* (") 2 1  i;[(nlH3/zlx1,z(n))+ (nlHzln)]. 
xo 

The corrections to the wave functions are given by 
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By a straightforward application of the raising and lowering operators of the harmonic 
oscillator problem to expressions (A8) and (A9) with expressions (AIO), (A1 1)  and (A12), 
the higher-order terms given in equations (12) and (17) are obtained. 
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